Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2017

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32\textdegree < MLat < -15\textdegree), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLat ~ -31\textdegree). Most of the elements had \textquotedbllefthook\textquotedblright like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30\textdegree from the direction anti-parallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

2014

Magnetospheric Multiscale Science Mission Profile and Operations

The Magnetospheric Multiscale (MMS) mission and operations are designed to provide the maximum reconnection science. The mission phases are chosen to investigate reconnection at the dayside magnetopause and in the magnetotail. At the dayside, the MMS orbits are chosen to maximize encounters with the magnetopause in regions where the probability of encountering the reconnection diffusion region is high. In the magnetotail, the orbits are chosen to maximize encounters with the neutral sheet, where reconnection is known to occur episodically. Although this targeting is limited by engineering constraints such as total available fuel, high science return orbits exist for launch dates over most of the year. The tetrahedral spacecraft formation has variable spacing to determine the optimum separations for the reconnection regions at the magnetopause and in the magnetotail. In the specific science regions of interest, the spacecraft are operated in a fast survey mode with continuous acquisition of burst mode data. Later, burst mode triggers and a ground-based scientist in the loop are used to determine the highest quality data to downlink for analysis. This operations scheme maximizes the science return for the mission. Space Science Reviews Space Science Reviews Look

Fuselier, S.; Lewis, W.; Schiff, C.; Ergun, R.; Burch, J.; Petrinec, S.; Trattner, K.;

Published by: Space Science Reviews      Published on: 09/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0087-x

Magnetic reconnection; Magnetospheric multiscale; Space mission design; Spacecraft orbits

The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth\textquoterights magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly\textquoterights Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to >0.5 MeV (with capabilities to measure up to >1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to >0.5 MeV, and also measures total ion energy distributions from 45 keV to >0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth\textquoterights magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth\textquoterights magnetotail during the about 6 months that comprise orbital phase 2.

Mauk, B.; Blake, J.; Baker, D.; Clemmons, J.; Reeves, G.; Spence, H.; Jaskulek, S.; Schlemm, C.; Brown, L.; Cooper, S.; Craft, J.; Fennell, J.; Gurnee, R.; Hammock, C.; Hayes, J.; Hill, P.; Ho, G.; Hutcheson, J.; Jacques, A.; Kerem, S.; Mitchell, D.; Nelson, K.; Paschalidis, N.; Rossano, E.; Stokes, M.; Westlake, J.;

Published by: Space Science Reviews      Published on: 06/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0055-5

Magnetic reconnection; Magnetosphere; Magnetospheric multiscale; NASA mission; Particle acceleration; Space plasma



  1